Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption.
نویسندگان
چکیده
Mesoporous aluminosilicate adsorbents for carbon dioxide were prepared by the grafting of aluminium into SBA-15 silica using an aqueous solution of aluminium chlorohydrate. As the ion exchange sites are primarily associated with the presence of tetrahedrally coordinated aluminium, extra-framework aluminium on the SBA-15 surface was inserted into the silica matrix by a treatment with an aqueous solution of NH(4)OH. Synthesized mesoporous aluminosilicate preserving all the characteristic features of a mesoporous molecular sieve was finally modified by the alkali metal cation exchange. To examine carbon dioxide adsorption on prepared materials, adsorption isotherms in the temperature range from 0 °C to 60 °C were measured. Based on the known temperature dependence of adsorption isotherms, isosteric adsorption heats giving information on the surface energetics of CO(2) adsorption were calculated and discussed. The comparison of carbon dioxide isotherms obtained on aluminosilicate SBA-15, aluminosilicate SBA-15 containing cations Na(+) and K(+) and activated alumina F-200 reveals that the doping with sodium or potassium cations dramatically enhances adsorption in the region of equilibrium pressures lower than 10 kPa. Therefore, synthesized aluminosilicate adsorbents doped with Na(+) or K(+) cations are suitable for carbon dioxide separation from dilute gas mixtures.
منابع مشابه
Synthesis and Characterization of Amine-modified Mesoporous SBA-15 for Carbon Dioxide Sequestration at High Pressure and Room Temperature (RESEARCH NOTE)
Amine-modified mesoporous SBA-15 adsorbent has been prepared by impregnation method using tetraethylenepentamine. The samples of this modified SBA-15 have been characterized by small angle X-ray scattering (SAXS), Scanning electron microscopy (SEM), Nitrogen adsorption-desorption isotherm and FT-IR. The adsorption capacity of CO2 on unmodified and modified samples were measured at high pressure...
متن کاملThe increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping.
Highly porous nitrogen-doped activated carbons (NACs) were prepared by the chemical activation of chitosan using alkali carbonates. The NACs exhibited extremely high CO2 capacities of 1.6 mmol g(-1) (15 kPa) and 4.9 mmol g(-1) (100 kPa) at 25 °C. Nitrogen atoms doped into carbon frameworks clearly enhanced CO2 adsorption at low partial pressures.
متن کاملApplication of Porphyrin Modified SBA-15 in Adsorption of Lead Ions from Aqueous Media
Mesoporous silica SBA-15 was synthesized using P123 as surfactant and functionalized with (3-chloropropyl) triethoxysilane. For the first time, the composite of THPP-SBA-15 was prepared using incorporation of tetrakis(4-hydroxyphenyl)porphyrin in functionalized SBA-15. The materials were characterized by BET, SEM, XRD, FT-IR, DRS, and UV–Vis spectroscopy techniques. The synthesized composite wa...
متن کاملInvestigation of Carbon Dioxide Adsorption on Amino-Functionalized Mesoporous Silica
Carbon dioxide (CO2) adsorption on unfunctionalized and amino-functionalized SBA-3 materials are investigated and compared in this study. The synthesized materials are characterized by various techniques such as X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET) method, Fourier transform infrared (FT-IR) and Scanning electron microscopy (SEM).The isotherms of these materials have been measure...
متن کاملMechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides.
The highly ordered mesoporous silica media, SBA-15, was synthesized and incorporated with iron, aluminum, and zinc oxides using an incipientwetness impregnation technique. Adsorption capacities and kinetics of metal-impregnated SBA-15 were compared with activated alumina which is widely used for arsenic removal. Media impregnated with 10% of aluminum by weight (designated to Al10SBA-15) had 1.9...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 12 20 شماره
صفحات -
تاریخ انتشار 2010